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Abstract. Let K = Q(α) be a pure number field generated by a root α of a monic

irreducible polynomial F(x) = x2u·3v·5t
−m, with m , ±1 a square free rational integer,

u, v and t three positive integers. In this paper, we study the monogenity of K. We
prove that if m . 1 (mod 4), m . ±1 (mod 9), and m < {±1,±7} (mod 25), then K is
monogenic. But if m ≡ 1 (mod 4) or m ≡ 1 (mod 9) or m ≡ −1 (mod 9) and u = 2k for
some odd integer k or u ≥ 2 and m ≡ 1 (mod 25) or m ≡ −1 (mod 25) and u = 2k for
some odd integer k or u = v = 1 and m ≡ ±82 (mod 54), then K is not monogenic.

1. Introduction

Let K = Q(α) be a number field generated by a root α of a monic irreducible
polynomial F(x) ∈ Z[x] and ZK its ring of integers. It is well know that the ring ZK

is a free Z-module of rank n = [K : Q]. Thus by the fundamental theorem of finitely
generated Abelian groups, the Abelian group ZK/Z[α] is finite. Its cardinal order
is called the index of Z[α], and denoted by (ZK : Z[α]). The ring ZK is said to be
monogenic if it has a power integral basis as aZ-module. That is (1, θ, · · · , θn−1) is a
Z-basis ofZK for some θ ∈ ZK. K is said to be not monogenic otherwise. Monogenity
of number fields is a classical problem of algebraic number theory, going back to
Dedekind, Hasse, and Hensel (see for instance [22]). The problem of testing the
monogenity of number fields and the construction of power integral bases has been
intensively studied these last four decades, mainly by Gaál, Nakahara, Pohst, and
their collaborators (see for instance [2, 21, 22, 23, 34]). In [19], Funakura, calculated
integral bases and studied monogenity of pure quartic fields. In [24], Gaál and

Remete, calculated the elements of index 1 in pure quartic fields generated by m
1
4

for 1 < m < 107 and m ≡ 2, 3 (mod 4). In [1], Ahmad, Nakahara, and Husnine
proved that if m ≡ 2, 3 (mod 4) and m . ±1 (mod 9), then the sextic number field

generated by m
1
6 is monogenic. They also showed in [2], that if m ≡ 1 (mod 4) and

m . ±1 (mod 9), then the sextic number field generated by m
1
6 is not monogenic.

In [8], based on prime ideal factorization, El Fadil showed that if m ≡ 1 (mod 4)

or m ≡ 1 (mod 9), then the sextic number field generated by m
1
6 is not monogenic.

Hameed and Nakahara proved that if m ≡ 1 (mod 4), then the octic number field
generated by m1/8 is not monogenic, but if m ≡ 2, 3 (mod 4), then it is monogenic
([27]). In [25], by applying the explicit form of the index equation, Gaál and Remete
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obtained deep new results on monogenity of number fields generated by m
1
n , with

3 ≤ n ≤ 9 and m , ±1 a square free integer. In [3, 4, 18, 8, 9, 10, 11, 12, 13], based
on Newton polygon’s techniques, El Fadil et al. studied the monogenity of some
pure number fields. Also El Fadil, Chouli, and Kchit studied the monogenity of pure
number fields defined by x60 − m ∈ Z[x] with m a square free integer. The goal of

this paper is to study the monogenity of pure number fields defined by x2u·3v·5t
− m,

where m , ±1 is a square free integer, u, v, and t are three natural integers. The cases
uvt = 0 have been studied in [3, 28, 4, 18]. Also the case u = 2 and t = v = 1 has been
studied by in [15]. Our proofs are based on Newton’s polygon techniques and on
index divisors as introduced by Hensel as follows: The index of a field K is defined
by i(K) = gcd{(ZK : Z[θ]) | K = Q(θ) and θ ∈ ZK}. A rational prime p dividing i(K)
is called a prime common index divisor of K. If ZK has a power integral basis, then
i(K) = 1. Therefore a field having a prime common index divisor is not monogenic.

2. Main results

Let K be a number field generated by a complex root α of a monic irreducible

polynomial F(x) = x2u·3v·5t
− m, with m , ±1 a square free rational integer, u, v, and t

three positive integers.

Theorem 2.1. The ring Z[α] is the ring of integers of K if and only if m . 1 (mod 4),
m . ±1 (mod 9), and m < {±1,±7} (mod 25).

Remark. If m ≡ 1 (mod 4), m . ±1 (mod 9), and m < {±1,±7} (mod 25), then Z[α] is
not integrally closed. But in this case, Theorem 2.1 cannot decide on monogenity of
K. The following theorems give an answer.

Theorem 2.2. (1) m ≡ 1 (mod 4), then 2 divides i(K).
(2) m ≡ 1 (mod 9) or m ≡ −1 (mod 9) and u = 2k for some odd integer k or u = 1,

m ≡ −1 (mod 27), and v ≥ 3, then 3 divides i(K).
(3) m ≡ ±1 (mod 25) and u = 2k for some odd integer k or u = 1, m ≡ ±1 (mod 125),

and t ≥ 2 or u = v = 1, m ≡ ±82 (mod 54), and t ≥ 3, then 5 divides i(K).
In particular, if one of these following conditions holds, then K is not monogenic.

Corollary 2.3. Let a , ±1 be a square free rational integer, u, v and t three positive integers,

and s < 2u · 3v · 5t a positive integer, which is coprime to 30. Then F(x) = x2u·3v·5t
− as is

irreducible over Q. Let K be the number field generated by a complex root α of the monic
irreducible polynomial F(x).

(1) If a . 1 (mod 4), m . ±1 (mod 9), and m < {±1,±7} (mod 25) then K is monogenic.
(2) If one of the following conditions holds

(a) a ≡ 1 (mod 4),
(b) a ≡ 1 (mod 9),
(c) a ≡ −1 (mod 9) and u = 2k for some positive odd integer k,
(d) a ≡ −1 (mod 27) and v ≥ 3,
(e) a ≡ 1 (mod 25) and u ≥ 2,
(f) a ≡ −1 (mod 25) and u = 2k for some positive odd integer k,
(g) a ≡ ±82 (mod 54), u = v = 1, and t ≥ 3,
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then K is not monogenic.

3. Preliminaries

Let K = Q(α) be a number field generated by a root α of a monic irreducible
polynomial F(x) ∈ Z[x],ZK its ring of integers, and ind(α) = (ZK : Z[α]) the index of
Z[α] in ZK. For a rational prime integer p, if p does not divide (ZK : Z[α]), then a
well known theorem of Dedekind says that the factorization of pZK can be derived

directly from the factorization of F(x) in Fp[x]. Namely, pZK =
∏r

i=0 p
li
i
, where every

pi = pZK + φi(α)ZK and F(x) =
∏r

i=1 φi(x)
li

modulo p is the factorization of F(x) into
powers of monic irreducible coprime polynomials of Fp[x]. So, f (pi) = deg(φi) is
the residue degree of pi (see [32, Chapter I, Proposition 8.3]). In order to apply this
theorem in an effective way, one needs a criterion to test whether p divides the index
(ZK : Z[α]). In 1878, Dedekind proved the well known Dedekind’s criterion which
allows to test if a prime integer p divides (ZK : Z[α]) [5, Theorem 6.1.4] and [6].
When Dedekind’s criterion fails, that is, p divides the index (ZK : Z[θ]) for every
primitive element θ ∈ ZK of K, then it is not possible to obtain the prime ideal
factorization of pZK by applying Dedekind’s theorem. In 1928, Ore developed an
alternative approach for obtaining the index (ZK : Z[α]), the absolute discriminant,
and the prime ideal factorization of the rational primes in a number field K by using
Newton polygons (see [31, 33]). For the convenience of the reader, as it is necessary
for the proof of our main results, we refer to our paper [20].
We start by recalling some fundamental facts about Newton polygons applied in
algebraic number theory. For more details, we refer to [16, 17, 26]. For a prime integer
p and for a monic polynomial φ ∈ Z[x] whose reduction is irreducible in Fp[x], let

Fφ be the field
Fp[x]

(φ)
. For any monic polynomial F(x) ∈ Z[x], upon the Euclidean

division by successive powers of φ, we expand F(x) as F(x) =
∑l

i=0 ai(x)φ(x)i, called
the φ-expansion of F(x) (for every i, deg(ai(x)) < deg(φ)). The φ-Newton polygon of
F(x) with respect to p, is the lower boundary of the convex envelope of the set of
points {(i, νp(ai(x))), ai(x) , 0} in the Euclidean plane, which is denoted by Nφ(F). Let
S1, S2, . . . , St be the sides of Nφ(F). For every side S of Nφ(F), the length of S, denoted
by l(S), is the length of its projection to the x-axis, its height, denoted by H(S), is
the length of its projection to the y-axis. Let λ = H(S)/l(S), then −λ is the slope of
S. If λ , 0, then λ = h/e with e and h two positive coprime integer. Notice that
e = l(S)/d, called the ramification index of S and h = H(S)/d, where d =gcd(l(S),H(S))
is called the degree of S. Thus Nφ(F) is the join of its different sides ordered by
increasing slopes, which we can express by Nφ(F) = S1 + S2 + · · · + St. The principal
φ-Newton polygon of F(x) , denoted by N+

φ
(F), is the part of the polygon Nφ(F),

which is determined by all sides of negative slopes of Nφ(F). For every side S of
N+
φ

(F), with initial point (s, us) and length l, and for every i = 0, . . . , l, we attach the
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following residue coefficient ci ∈ Fφ as follows:

ci =



















0, if (s + i, us+i) lies strictly above S,
(

as+i(x)

pus+i

)

(mod (p, φ(x))), if (s + i, us+i) lies on S.

where (p, φ(x)) is the maximal ideal of Z[x] generated by p and φ.
Let λ = −h/e be the slope of S, where h and e are two positive coprime integers. Then
d = l/e is the degree of S. Notice that, the points with integer coordinates lying on S
are exactly (s, us), (s+ e, us−h), · · · , (s+de, us−dh). Thus, if i is not a multiple of e, then
(s+i, us+i) does not lie on S, and so ci = 0. Let FS(y) = tdyd+td−1yd−1+· · ·+t1y+t0 ∈ Fφ[y],
called the residual polynomial of F(x) associated to the side S, where for every
i = 0, . . . , d, ti = cie. The theorem of Ore plays a key role for proving our main
theorems:
Letφ ∈ Z[x] be a monic polynomial, with φ(x) irreducible inFp[x]. As defined in [17,
Def. 1.3], the φ-index of F(x), denoted indφ(F), is deg(φ) multiplied by the number
of points with natural integer coordinates that lie below or on the polygon N+

φ
(F),

strictly above the horizontal axis, and strictly beyond the vertical axis (see Figure

1). Assume that F(x) =
∏r

i=1 φi

li
is the factorization of F(x) in Fp[x], where φ1, . . . , φr

0

S1

S2

S3

Figure 1. N+
φ

(F).

are monic polynomials lying inZ[x] and φ1, . . . , φr are pairwise coprime irreducible
polynomials over Fp. For every i = 1, . . . , r, let N+

φi
(F) = Si1 + · · ·+ Siri

be the principal

part of the φi-Newton polygon of F with respect to p. For every j = 1, . . . , ri, let

FSi j
(y) =

∏si j

s=1
ψ

ai js

i js
(y) be the factorization of FSi j

(y) into powers of monic irreducible

polynomials ofFφi
[y]. Then we have the following theorem of Ore (see [17, Theorem

1.7 and Theorem 1.9], [16, Theorem 3.9], and [31]):

Theorem 3.1. (Theorem of Ore)

(1)

νp((ZK : Z[α])) ≥

r
∑

i=1

indφi
(F).

The equality holds if ai js = 1 for every i, j, s.
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(2) If ai js = 1 for every i, j, s, then

pZK =

r
∏

i=1

ri
∏

j=1

si j
∏

s=1

p
ei j

i js

is the factorization of pZK into powers of prime ideals ofZK lying above p, where ei j

is the ramification index of the side Si j and fi js = deg(φi) × deg(ψi js) is the residue
degree of pi js over p for every i = 1, . . . , r, j = 1, . . . , ri, and s = 1, . . . , si j.

Corollary 3.2. Under the assumptions above Theorem 3.1, if for every i = 1, . . . , r, li = 1 or
Nφi

(F) = Si has a single side of height 1, then νp((ZK : Z[α])) = 0.

The following lemma allows to evaluate the p-adic valuation of the binomial

coefficient
(pr

j

)

. For its proof, we refer to [4].

Lemma 3.3. Let p be a rational prime integer and r be a positive integer. Then νp

(

(pr

j

)

)

=

r − νp( j) for any integer j = 1, . . . , pr − 1.

The following lemma allows to determine the φ-Newton polygon of F(x).

Lemma 3.4. Let F(x) = xn − m ∈ Z[x] be an irreducible polynomial and p a prime integer
which divides n and does not divide m. Let n = prt in Z with p does not divide t. Then

F(x) = (xt −m)
pr

. Let v = νp(mp−m) and φ ∈ Z[x] be a monic polynomial, whose reduction

modulo p divides F(x). Let us denote (xt −m) = φ(x)Q(x) + R(x). Then νp(R) ≥ 1.

(1) If νp(mp−1 − 1) ≤ r, then N+
φ

(F) is the lower boundary of the convex envelope of the

set of the points {(0, v)} ∪ {(p j, r − j), j = 0, . . . , r}.
(2) If νp(mp−1 − 1) ≥ r + 1, then N+

φ
(F) is the lower boundary of the convex envelope of

the set of the points {(0,V)} ∪ {(p j, r − j), j = 0, . . . , r} for some integer V ≥ r + 1.

4. Proofs of main results

Proof. of Theorem 2.1.
The proof of Theorem 2.1 can be done by using Dedekind’s criterion as it was shown
in the proof of [29, Theorem 6.1]. But as the other results are based on Newton
polygon’s techniques, let us use theorem of index with ”if and only if” as it is given in
[26, Theorem 4.18], which says that: νp(ZK : Z[α]) = 0 if and only if ind1(F) = 0, where

ind1(F) is the index given in Theorem 3.1. Since △(F) = ∓(2u · 3v · 5t)2u·3v·5t
m2u·3v·5t−1, by

the formula νp(△(F)) = 2νp(ind(F)) + νp(dK), where dK is the absolute discriminant of
K and ind(F) = (ZK : Z[α]), we conclude that Z[α] is integrally closed if and only if
p does not divide (ZK : Z[α]) for every rational prime integer p dividing 30m. Let

p be a rational prime dividing m, then F(x) ≡ φ2u ·3v·5t
( mod p), where φ = x. As m is

a square free integer, the φ-principal Newton polygon with respect to νp, N+
φ

(F) = S

has a single side of height νp(m). As l(S) = 2u · 3v · 5t ≥ 2, indφ(F) = 0 if and only if S
has height 1, which means νp(m) = 1. It follows that the unique prime candidates to
divide the index (ZK : Z[α]) are 2, 3, and 5.
For p = 2 and 2 does not divide m, let φ ∈ Z[x] be a monic polynomial, whose
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reduction is an irreducible factor of (x3v·5t
− 1) in F2[x]. Again as l(N+

φ
(F)) = 2u ≥ 2,

indφ(F) = 0 if and only if N+
φ

(F) has a single side of height 1, which means by Lemma

3.4 that ν2(1 −m) = 1; m . 1 (mod 4).
Similarly, for p = 3 and 3 does not divide m, let φ ∈ Z[x] be a monic polynomial,

whose reduction is an irreducible factor of (x2u·5t
− m) in F3[x]. Again as l(N+

φ
(F)) =

3v ≥ 2, indφF = 0 if and only if N+
φ

(F) has a single side of height 1, which means by

Lemma 3.4 that ν3(m2 − 1) = 1 = 1; m . ∓1 (mod 9).
Again, for p = 5 and 5 does not divide m, let φ ∈ Z[x] be a monic polynomial,
whose reduction is an irreducible factor of (x2u·3v

−m) in F5[x]. As l(N+
φ

(F)) = 5t ≥ 2,

indφF = 0 if and only if N+
φ

(F) has a single side of height 1, which means by Lemma

3.4 that ν5(m4 − 1) = 1 = 1; m < {∓1,±7} (mod 25). �

The existence of prime common index divisors was first established in 1871 by
Dedekind who exhibited examples in fields of third and fourth degrees, for example,
he considered the cubic field K defined by F(x) = x3 − x2 − 2x − 8 and he showed
that the prime 2 splits completely. So, if we suppose that K is monogenic, then we
would be able to find a cubic polynomial generating K, that splits completely into
distinct polynomials of degree 1 in F2[x]. Since there are only 2 distinct polynomials
of degree 1 in F2[x], this is impossible. Based on these ideas and using Kronecker’s
theory of algebraic numbers, Hensel gave a necessary and sufficient condition on
the so-called ”index divisors” for any prime integer p to be a prime common index
divisor [30]. (For more details see [29]). For the proof of Theorem 2.2, we need
the following lemma, which characterizes the prime common index divisors of K.
We need to use only one way, which is an immediate consequence of Dedekind’s
theorem.

Lemma 4.1. Let p be a rational prime integer and K be a number field. For every positive
integer f , let P f be the number of distinct prime ideals of ZK lying above p with residue
degree f and N f the number of monic irreducible polynomials of Fp[x] of degree f . Then p
is a prime common index divisor of K if and only if P f > N f for some positive integer f .

Remark. As it was shown in the proof of Theorem 2.1, the unique prime candidates
to be a prime common index divisors of K are 2, 3, and 3, because if p < {2, 3, 5}, then
p does not divide the index (ZK : Z[α]), and so the factorization of pZK is analogous

to the factorization of x2u·3v·5t
−m in Fp[x].

Remark. In order to prove Theorem 2.2, we don’t need to determine the factorization
of pZK explicitly. But according to Lemma 4.1, we need only to show that P f > N f

for an adequate positive integer f . So in practice the second point of Theorem 3.1,
could be replaced by the following: If li = 1 or di j = 1 or ai jk = 1 for some (i, j, k)
according to notation of Theroem 3.1, thenψi jk provides a prime ideal pi jk ofZK lying

above p with residue degree fi jk = mi × ti jk, where ti jk =deg(ψi jk) and pZK = p
ei j

i jk
I,

where the factorization of the ideal I can be derived from the other factors of each
residual polynomials of F(x).
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Proof. of Theorem 2.2.

(1) Assume that m ≡ 1 (mod 4). Let 3v · 5t = 3s for some odd integer s ∈ Z.

Then F(x) = ((x3 − 1)(U(x))2u
= (x2 + x + 1)T(x)

2u

in F2[x] for some monic

polynomials U and T in Z[x] such that (x2 + x + 1) and T(x) are coprime

over F2[x] because (x3s − 1) is separable over F2[x]. Let φ = x2 + x + 1 and
x3s − 1 = φ(x)T(x) + 2a for some integer a ∈ Z.
(a) ν2(1 −m) = 2, then by Lemmas 3.4 and 3.3, N+

φ
(F) = S has a single side of

degree d = 2. By using F(x) = ((x3s − 1) + 1)2u
− m = (φ(x)T(x) + 2a)2u

+
∑2u−1

j=1

(2u

j

)

(Tφ + 2a)3v− j · · · + 1 − m, we have FS(y) = t2y2 + ty + 1, where

t ≡ T(x) (mod 2, φ) is a nonzero element of Fφ (because φ does not divide

T(x) inF2[x]). Hence FS(y) = (ty−x)(ty−x2) inFφ[y]. Thus by Remark 4,φ
provides 2 distinct prime ideals of ZK lying above 2 with residue degree
2 each. If ν2(1−m) = 3 , then by Lemmas 3.4 and 3.3, N+

φ
(F) has two sides

S1 and S2 joining the point (0, 3), (2u−1, 1), and (2u, 0) (see FIGURE 2).
Thus S1 is a side of degree 2 and S2 is a side of degree 1. By using

F(x) = ((x3s−1)+1)2u
−m = (φ(x)T(x)+2a)2u

+
∑2u−1

j=1

(2u

j

)

(Tφ+2a)3v− j · · ·+1−m,

we conclude that FS1
(y) = t2y2 + ty + 1 = (ty − x)(ty − x2), where t ≡

T(x) (mod 2, φ) is a nonzero element of Fφ and FS2
(y) is of degree 1. By

Remark 4, φ provides three prime ideals ofZK lying above 2 with residue
degree deg(φ) = 2 each. As x2 + x + 1 is the unique monic irreducible
polynomial of degree 2 in F2[x], by Lemma 4.1, 2 divides i(K) and K is
not monogenic.

0 2u−2 2u−1 2u

1

2

3
S1

S2

Figure 2. N+
φ

(F) for v2 = 3.

(b) If v2 ≥ 4, then by Lemma 3.4, N+
φ

(F) has g ≥ 2 sides for which the last two

sides Sg and Sg−1 are of height 1 each (see FIGURE3). Thus, FSg(y) and
FSg−1

(y) are of degree 1. By Remark 4, φ provides at least two prime ideals

ofZK lying above 2 with residue degree deg(φ) = 2 each. As x2 + x+ 1 is
the unique monic irreducible polynomial of degree 2 in F2[x], by Lemma
4.1, 2 divides i(K) and K is not monogenic.

(2) Assume m ≡ 1 (mod 9). Let 2u · 5t = 2s for some integer s ∈ Z. Then

F(x) = (x2s − 1)3v
= ((x − 1)(x + 1)U(x))3v

in F3[x] for some monic polynomial
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0 2u−2 2u−1 2u

1

2

3

ν2

Sg−1

Sg

Figure 3. N+
φ

(F) for v2 ≥ 4.

U(x) ∈ F3[x]. Let φ1 = x − 1, φ2 = x + 1, and v3 = ν3(1 − m). If v3 ≥ 2, then
by Lemmas 3.4 and 3.3, N+

φi
(F) has g ≥ 2 sides of which the last two sides Sig

and Sig−1 are of height 1 each for every i = 1, 2 (see FIGURE4 and FIGURE5).
Thus FSig

(y) and FSig−1
(y) are of degree 1 for every i = 1, 2. By Remark 4, every

φi provides at least 2 prime ideals pi j ofZK lying above 3 with residue degree
fi j = 1 for every i, j = 1, 2. Therefore, there are at least 4 prime ideals of ZK

lying above 3 with residue degree 1 each. As there is only 3 monic irreducible
polynomial of degree 1 in F3[x], by Lemma 4.1, 3 divides i(K) and K is not
monogenic.

0 3v−2 3v−1 3v

1

2

v3

Si2

Si1

Figure 4. N+
φi

(F) for v ≥ 2 and v3 = 3.

0 1 3

1

2

v3

Sig

Sig−1

Figure 5. N+
φi

(F) for v = 1 and v3 ≥ 3.
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(3) Assume that m ≡ −1 (mod 9) and u = 2k for some odd integer k. Then

2u · 5t = 4s for some odd nonnegative integer s. Thus F(x) = (x4 + 1)U(x)3v
=

((x2 + x − 1)(x2 − x − 1)U(x))3v
in F3[x] for some monic polynomial U ∈ Z[x].

Let φ1 = x2 + x− 1, φ2 = x2 − x− 1, and v3 = ν3(1−m). Since 3 does not divide

4s = 2u · 5t, (x4s + 1) is separable over F3. So, φ1φ2(x) and U(x) are coprime
in F3[x]. By Lemmas 3.4 and 3.3, for every i = 1, 2, N+

φi
(F) has at least two

sides Si1 and Si2 with height 1 each. Thus FSi j
(y) is irreducible over Fφi

as it
is of degree 1 for every i, j = 1, 2. By Remark 4, every factor φi provides at
least two distinct prime ideals of ZK lying above 3 with residue degree f = 2
each. Thus there are at least four distinct prime ideals of ZK lying above 3
with residue degree f = 2 each. As x2 + 1, x2 + x − 1, and x2 − x − 1 are the
unique monic irreducible polynomials of degree 2 in F3[x], by Lemma 4.1, 3
divides i(K), and so K is not monogenic.

(4) Similarly, if we assume that u = 1, m ≡ ±1 (mod 81), and v ≥ 3, then let
φ = x2 + 1. By Lemmas 3.4 and 3.3, N+

φ
(F) has at least four sides of degree

1 each. Thus φ provides at least four prime ideals of ZK lying above 3 with
residue degree 1 each.

(5) Assume that m ≡ ±1 (mod 125) and t ≥ 2. Then F(x) has two monic factors

φ1 and φ2 of degree 1 each in F5[x]. Let φ be one fixed factor of F(x) of degree
1. Since m ≡ ±1 (mod 125), by Lemmas 3.4 and 3.3, we conclude that N+

φ
(F)

has at least 3 sides of degree 1 each. Thus φ provides at least 3 prime ideals
ofZK lying above 5 with residue degree 1 each. Hence the two factors φ1 and
φ2 provide at least 6 prime ideals of ZK lying above 5 with residue degree 1
each. Therefore 5 divides i(K), and so K is not monogenic.

(6) Assume that m ≡ 1 (mod 25) and u ≥ 2. By the litle Fermat’s theorem, x4 − 1

has four distinct monic factors of degree 1 each in F5[x]. Let φ be one fixed

factor of degree 1 of F(x) in F5[x]. Since m ≡ 1 (mod 25), by Lemmas 3.4
and 3.3, we conclude that N+

φ
(F) has at least 2 sides of degree 1 each. Thus

φ provides at least 2 prime ideals of ZK lying above 5 with residue degree
2 each. It follows that the four factors provide at least 8 prime ideals of ZK

lying above 5 with residue degree 1 each. Thus, 5 divides i(K), and so K is
not monogenic.

(7) If m ≡ −1 (mod 25) and u = 2k, then x12 + 1 divides F(x) in F5[x] and x12 + 1 =

(x2 + 4x + 2)(x2 + 3x + 3)(x2 + 2)(x2 + x + 2)(x2 + 2x + 3)(x2 + 3) in F5[x]. Let φ
be one fixed of these factors. Since m ≡ 1 (mod 25), by Lemmas 3.4 and 3.3,
N+
φ

(F) has at least 2 sides of degree 1 each. Thus φ provides at least 2 prime

ideals ofZK lying above 5 with residue degree 2 each. Hence there are at least
12 prime ideals of ZK lying above 5 with residue degree 2 each. As there are
only 10 monic irreducible polynomial of degree 2 in F5[x], by Lemma 4.1, 5
divides i(K), and so K is not monogenic.
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(8) Assume that u = v = 1, m ≡ ±82 (mod 54), and t ≥ 3. Since x6 − 2 =

(x2 + 4x + 2)(x2 + x + 2)(x2 + 2) and x6 + 2 = (x2 + 3)(x2 + 3x + 3)(x2 + 2x + 3)

in F5[x]. Let φ be one fixed irreducible factor of F(x) of degree 2. Since
m ≡ ±82 (mod 54), we have ν5(m4 + 1) ≥ 4. So, by Lemmas 3.4 and 3.3, we
conclude that N+

φ
(F) has at least 4 sides of degree 1 each. Thus φ provides at

least 4 prime ideals ofZK lying above 5 with residue degree 2 each. Since F(x)
has 3 distinct monic irreducible factors in F5[x] of degree 2 each, we conclude
that there are at least 12 prime ideals ofZK lying above 5 with residue degree
2 each. As there is only 10 monic irreducible polynomial of degree 2 in F5[x],
by Lemma 4.1, 5 divides i(K), and so K is not monogenic.

�

Proof. of Theorem 2.3.
Since gcd(k, 30) = 1, let (x, y) ∈ Z2 be the unique solution of the equation k · x − 2u ·

3v · 5t · y = 1 and θ = αx

ay . Then θ2u·3v·5t
= a, and so g(x) = x2u·3v·5t

− a is the minimal
polynomial of θ over Q; θ ∈ ZK is a primitive element of K. Since a , ±1 is a square
free integer, we can apply Theorems 2.1 and 2.2, and get the desired result. �
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Soc. Sci. Math. R épub. Soc. Roum. 58(106) No. 4(2015) 419–433
[28] A. Hameed, T. Nakahara, S. M. Husnine, On existence of canonical number system in certain

classes of pure algebraic number fields, J. Prime Res. Math. 7(2011) 19–24.
[29] H. Smith, The monogenity of radical extension, Acta Arithmitica, 198(2021), 313–327.
[30] K. Hensel, Arithmetische Untersuchungen über die gemeinsamen ausserwesentlichen Discriminan-

tentheiler einer Gattung, J. Reine Angew. Math., 113:128–160, 1894. ISSN 0075-4102. doi:
10.1515/crll.1894.113.128.

[31] J. Montes and E. Nart, On a theorem of Ore, J. Algebra 146(2) (1992) 318–334
[32] J. Neukirch, Algebraic Number Theory, Springer-Verlag, Berlin, 1999.
[33] O. Ore, Newtonsche Polygone in der Theorie der algebraischen Korper, Math. Ann., 99 (1928), 84–117
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