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ABSTRACT
Smart contracts are prone to various vulnerabilities, leading to
substantial financial losses over time. Current analysis tools mainly
target vulnerabilities with fixed control- or data-flow patterns, such
as re-entrancy and integer overflow. However, a recent study on
Web3 security bugs revealed that about 80% of these bugs cannot be
audited by existing tools due to the lack of domain-specific property
description and checking. Given recent advances in Generative Pre-
training Transformer (GPT), it is worth exploring how GPT could
aid in detecting logic vulnerabilities in smart contracts.

In this paper, we propose GPTScan, the first tool combining GPT
with static analysis for smart contract logic vulnerability detection.
Instead of relying solely on GPT to identify vulnerabilities, which
can lead to high false positives and is limited by GPT’s pre-trained
knowledge, we utilize GPT as a versatile code understanding tool.
By breaking down each logic vulnerability type into scenarios and
properties, GPTScan matches candidate vulnerabilities with GPT. To
enhance accuracy, GPTScan further instructs GPT to intelligently
recognize key variables and statements, which are then validated by
static confirmation. Evaluation on diverse datasets with around 400
contract projects and 3K Solidity files shows that GPTScan achieves
high precision (over 90%) for token contracts and acceptable preci-
sion (57.14%) for large projects like Web3Bugs. It effectively detects
ground-truth logic vulnerabilities with a recall of over 70%, includ-
ing 9 new vulnerabilities missed by human auditors. GPTScan is
fast and cost-effective, taking an average of 14.39 seconds and 0.01
USD to scan per thousand lines of Solidity code. Moreover, static
confirmation helps GPTScan reduce two-thirds of false positives.

1 INTRODUCTION
Smart contracts have emerged as the cornerstone of decentralized
finance (DeFi), providing a programmable and automated solution
for executing financial transactions. However, the security of these
smart contracts has become a major concern due to various se-
curity breaches [1, 5]. These breaches have led to financial losses
∗Corresponding author.

amounting to billions of dollars [64]. This situation is a disaster
for DeFi service providers, posing a significant threat to the entire
DeFi ecosystem and the safety of users’ assets.

Despite the availability of numerous analysis tools [24, 25, 33,
39, 49, 54], they often focus on vulnerabilities with fixed control-
or data-flow patterns, such as re-entrancy [43, 53], integer over-
flow [51], and access control vulnerabilities [32, 35, 42]. However, a
recent study conducted by Zhang et al. [63] on Web3 security bugs
reveals that around 80% of these vulnerabilities remain undetected
by existing tools. These undetected vulnerabilities are primarily
associated with the business logic of smart contracts. Traditional
static and dynamic analysis schemes, such as Slither [33], do not
effectively address these vulnerabilities in smart contracts because
they do not aim to comprehend the underlying business logic of
smart contracts, nor do they model the functionality or consider
the roles of various variables or functions.

In this paper, we explore how recent advances in Generative Pre-
training Transformer (GPT) [8, 40, 46] could aid in detecting logic
vulnerabilities in smart contracts. A recent technical report [29]
attempted to use GPT by providing it with high-level vulnerabil-
ity descriptions for project-wide “Yes-or-No” inquiries, which is
already easier than typical function-level vulnerability detection.
However, this approach suffered from a high false positive rate
of around 96% and required advanced reasoning capabilities from
GPT, necessitating the use of GPT-4 instead of GPT-3.5. Instead, we
treat GPT as a generic and powerful code understanding tool and
investigate how this capability can be combined with static analysis
to create an intelligent detection system for logic vulnerabilities.

To this end, we propose GPTScan, the first tool that combines
GPT with static analysis for detecting logic vulnerabilities in smart
contracts. To leverage GPT’s code understanding capability, we
break down each logic vulnerability type into code-level scenar-
ios and properties. Scenarios describe the code functionality under
which a logic vulnerability could occur, while properties explain
the vulnerable code attributes or operations. This approach enables
GPTScan to directly match candidate vulnerable functions based
on code-level semantics. However, since GPT-based matching is
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still coarse-grained, GPTScan further instructs GPT to intelligently
recognize key variables and statements, which are then validated by
dedicated static confirmation modules. Moreover, a smart contract
project can consist of multiple Solidity files, making it infeasible
or costly to directly feed all of them to GPT. To address this issue,
GPTScan employs a multi-dimensional filtering process to effec-
tively narrow down the candidate functions for GPT matching.

We implemented GPTScan with the widely used GPT-3.5-turbo
model [21], which is 20 times more cost-effective [9] than the ad-
vanced GPT-4 model. Moreover, our multi-dimensional filtering al-
lowed GPTScan to utilize the default 4k context token size instead of
16k, resulting in a more economical solution. The parameters were
mainly kept at their default values, except for the temperature
parameter, which was adjusted from the default value of 1 to 0
to reduce the impact of GPT’s output randomness. To further en-
hance the reliability of GPT’s answers and minimize the influence
of output randomness, we proposed a new approach called “mimic-
in-the-background” prompting, inspired by the zero-shot chain-of-
thought prompting [40]. For the static analysis part, GPTScan relies
on ANTLR [20] and crytic-compiler [10] to support call graph and
data dependency analysis.

To comprehensively evaluate GPTScan under different scenarios,
we collected three diverse datasets from real-world smart contracts.
Together, these datasets comprise around 400 contract projects,
3K Solidity files, 472K lines of code, and include 62 ground-truth
logic vulnerabilities. The first dataset, named Top200, consists of
smart contracts with the top 200 market capitalization. This dataset
primarily serves to evaluate the false positive rate of GPTScan. The
second dataset, referred to as Web3Bugs, was collected from the
recent Web3Bugs dataset [63]. The third dataset, called DefiHacks,
is sourced from the well-known DeFi Hacks dataset [2], which
contains vulnerable contracts that have experienced past attack
incidents. Top200 and DefiHacks primarily comprise cryptocurrency
token contract projects, whereasWeb3Bugs consists of large con-
tract projects audited on the Code4rena platform [11], with an
average of 36 Solidity files per project.

GPTScan achieves a low false positive rate of 4.39% when analyz-
ing non-vulnerable top contracts like Top200. It also demonstrates
similar performance in analyzing another set of token contracts,
DefiHacks, with a precision of 90.91%. These results indicate that
GPTScan is suitable for massive scanning of on-chain contracts.
Moreover, when analyzing large contract projects in Web3Bugs,
GPTScan still achieves an acceptable precision of 57.14%. Further-
more, GPTScan shows its efficacy in detecting ground-truth logic
vulnerabilities in theWeb3Bugs and DefiHacks datasets, with a re-
call of 83.33% and an F1 score of 67.8% forWeb3Bugs, and a recall of
71.43% and an F1 score of 80% for DefiHacks. In particular, GPTScan
identifies 9 new vulnerabilities that were not present in the audit
reports of Code4rena. This highlights the value of GPTScan as a
useful supplement to human auditors.

A further analysis of GPTScan’s running logs reveals that GPTScan
is fast and cost-effective, taking an average of only 14.39 seconds
and 0.01 USD to scan per thousand lines of Solidity code in the
tested datasets. The relatively higher cost (around 0.018 USD) and
slower speed (around 20 seconds) observed for Web3Bugs and Defi-
Hacks can be attributed to the presence of more complex functions
that cannot be filtered out by static filtering and scenario matching.

Furthermore, we diagnose that GPTScan’s static confirmation re-
duces 65.84% of the original false positive cases in the Web3Bugs
dataset. This finding underscores the importance of combining GPT
with static analysis to achieve accurate results.

Availability.GPTScan has been integrated as a part of MetaScan
(https://metatrust.io/metascan), an industry-leading smart contract
security scanning platform. Moreover, we will release GPTScan’s
evaluation data to facilitate easier comparisons in future work.

Roadmap. The rest of this paper is organized as follows. In §2,
we introduce some background information. In §3, we motivate the
need of both GPT and static analysis. Following that, in §4, we detail
the design of GPTScan, while in §5, we evaluate its performance.We
then discuss the applicability and current limitations in §6. Finally,
we summarize related work in §7 and conclude in §8.

2 BACKGROUND
In this section, we introduce some background about smart contract
vulnerabilities and GPT’s application in vulnerability detection.

Smart contract vulnerability types. Smart contracts are self-
running programs deployed on blockchain, written in a high-level
language called Solidity [12]. As described by Zhang et al. [63], there
are 26 types of vulnerabilities in smart contracts, categorized into
3 groups. The vulnerabilities in the first group are hard to exploit,
doubtful, or not directly related to the functionalities of a given
project. The second group of vulnerabilities involves the use of
simple and general oracles, not requiring an in-depth understanding
of the code semantics. Examples include Reentrancy and Arithmetic
Overflow. Such vulnerabilities can be detected by data flow tracing
(e.g., Slither [33]), static symbolic execution (e.g., Solidity SMT
Checker [13] and Mythril [14]) and other static analysis tools [15,
16, 24, 39, 44]. The third group of vulnerabilities requires high-
level semantical oracles for detection and is closely related to the
business logic. Most of these vulnerabilities are not detectable by
existing static analysis tools. This group comprises six main types
of vulnerabilities: (S1) price manipulation, (S2) ID-related violations,
(S3) erroneous state updates, (S4) atomicity violation, (S5) privilege
escalation, and (S6) erroneous accounting.

GPT and its application in vulnerability detection. Genera-
tive Pre-training Transformer (GPT) models, such as GPT-3.5 [46],
are large language models trained on vast text corpora, includ-
ing source code descriptions of different programming languages
and vulnerabilities. With this knowledge, GPT can understand and
interpret source code, enabling zero-shot learning [40], where ex-
amples of vulnerabilities are not needed to detect vulnerabilities
in source code. However, GPT still has a long way to go before it
can fully replace humans in code auditing [17]. David et al. [29]
provided GPT with vulnerability descriptions and used them to
detect vulnerabilities in source code. They fed the entire project
into the GPT-4-32k model to detect 38 types of vulnerabilities in
smart contracts. However, the results were unsatisfactory and even
worse than a randommodel in terms of recall. Due to the limitations
of the GPT model on content length (from 4k tokens in GPT-3.5 to
32k tokens in GPT-4), analyzing complete projects or documents
using GPT is not viable, making David et al.’s approach unsuitable
for large projects. Moreover, as GPT has limited logical reasoning
capabilities, its results may not always be accurate, necessitating
verification using other methods to reduce the false positive rate.

https://metatrust.io/metascan
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Figure 1: A high-level overview of GPTScan, with blue blocks denoting GPT tasks and green blocks representing static analysis.

1 function deposit(uint256 _amount) external returns (

uint256) {

2 uint256 _pool = balance ();
3 uint256 _before = token.balanceOf(address(this));
4 token.safeTransferFrom(msg.sender , address(this),

_amount);

5 uint256 _after = token.balanceOf(address(this));
6 _amount = _after.sub(_before); // Additional check

for deflationary tokens

7 uint256 _shares = 0;

8 if (totalSupply () == 0) {

9 _shares = _amount;

10 } else {

11 _shares = (_amount.mul(totalSupply ())).div(

_pool);

12 }

13 _mint(msg.sender , _shares);

14 }

Figure 2: The Risky First Deposit (line 8-9) vulnerability.

3 MOTIVATING EXAMPLES
In this section, we use two real-world smart contract examples
to motivate why both GPT and static analysis are needed in the
process of detecting logic vulnerabilities.

Example 1: RequiringGPT to recognize variables and static
analysis to confirm the variable dependency. The first example
in Figure 2 is from the Code4rena [11] project 2021-11-yaxis [6].
The vulnerability occurs when the LP (Liquidity Pool [41]) token’s
entire share is minted to the first depositor (line 9) while the current
LP token supply is zero (line 8). Consequently, the first depositor
can arbitrarily inflate the price per LP share (e.g., from a small
_amount to an extremely large value; see the detail of an exploit
in GitHub issue[3]), leading to future token deposits from victim
users to be indirectly “occupied” by the first depositor. While static
analysis may use hard-coded patterns to detect the totalSupply()
logic in line 8, GPT is necessary to intelligently recognize the vari-
ables responsible for holding the deposit amount (_amount) and
the total share of the pool (_shares). However, precisely validating
the vulnerable logic from line 8 to 9 falls outside the scope of GPT,
making static essential for this task.

Example 2: Requiring GPT to recognize statements and
static analysis to confirm the statement order. The second ex-
ample in Figure 3 is from the Code4Rena project 2022-04-backd [18],
where the executing order of some statements is incorrect. The cor-
rect order should be to first perform user checkpoints (line 10-11)
and then update the balances of the sender and receiver for the
transfer (lines 6-7). Due to this mistake, a user can steal all rewards
because the checkpoint is executed after reward transfer [4]. To de-
tect this vulnerability, GPT is required to understand the semantic
of statements and recognize those that perform user checkpoints

1 function transfer(address account , uint256 amount)

external override notPaused returns (bool) {

2 require(msg.sender != account , Error.

SELF_TRANSFER_NOT_ALLOWED);

3 require(balances[msg.sender] >= amount , Error.

INSUFFICIENT_BALANCE);

4 // Initialize the ILiquidityPool pool variable

5 pool.handleLpTokenTransfer(msg.sender , account ,

amount);

6 balances[msg.sender] -= amount;

7 balances[account] += amount;

8 address lpGauge = currentAddresses[_LP_GAUGE ];

9 if (lpGauge != address (0)) {

10 ILpGauge(lpGauge).userCheckpoint(msg.sender);
11 ILpGauge(lpGauge).userCheckpoint(account);

12 }

13 emit Transfer(msg.sender , account , amount);

14 return true;
15 }

Figure 3: TheWrong Checkpoint Order (line 6-7 and line 10-
11) vulnerability.

and those that change user balances. However, we found that GPT
struggles to comprehend the concept of “before,” and as a result, re-
lying solely onGPT could report a patched version1 of the transfer
function as vulnerable. To address this, static analysis is necessary.

4 GPTSCAN
In this section, we present GPTScan’s overall design and its three
core components from §4.1 to §4.4, followed by a summary of some
key implementation details in §4.5.

4.1 Overview and Challenges
Figure 1 illustrates GPTScan’s high-level workflow, with blue blocks
denoting GPT tasks and green blocks representing static analysis.
Given a smart contract project, which could be a standalone Solid-
ity file or a framework-based contract project containing multiple
Solidity files, GPTScan first performs contract parsing, call graph
analysis to determine function reachability, and comprehensive
filtering to extract candidate functions and their corresponding con-
text functions. GPTScan then utilizes GPT to match the candidate
functions with pre-abstracted scenarios and properties of relevant
vulnerability types. For the matched functions, GPTScan further
recognizes their key variables and statements via GPT, which are
subsequently passed to specialized static analysis modules for vul-
nerability confirmation.

During this three-step process, we need to address the following
three challenges:

1https://github.com/code-423n4/2022-05-backd/blob/2a5664d/protocol/contracts/
StakerVault.sol#L111-#L129

https://github.com/code-423n4/2022-05-backd/blob/2a5664d/protocol/contracts/StakerVault.sol#L111-#L129
https://github.com/code-423n4/2022-05-backd/blob/2a5664d/protocol/contracts/StakerVault.sol#L111-#L129
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Table 1: Breaking down ten common logic vulnerability types into scenarios and properties.
Vulnerability Type Scenario and Property Filtering Type Static Check

Approval Not
Cleared

Scenario: add or check approval via require/if statements before the token transfer
Property: and there is no clear/reset of the approval when the transfer
finishes its main branch or encounters exceptions

FNI, FCCE VC

Risky First
Deposit

Scenario: deposit/mint/add the liquidity pool/amount/share
Property: and set the total share to the number of first deposit when
the supply/liquidity is 0

FCCE DF, VC

Price Manipulation
by AMM

Scenario: have code statements that get or calculate LP token’s value/price
Property: based on the market reserves/AMMprice/exchangeRate OR the
custom token balanceOf/totalSupply/amount/liquidity calculation

FNK, FCCE DF

Price Manipulation
by Buying Tokens

Scenario: buy some tokens
Property: using Uniswap/PancakeSwap APIs FNK, FCE FA

Vote Manipulation
by Flashloan

Scenario: calculate vote amount/number
Property: and this vote amount/number is from a vote weight that might
be manipulated by flashloan

FCCE DF

Front Running

Scenario: mint or vest or collect token/liquidity/earning and assign them to
the address recipient or to variable
Property: and this operation could be front run to benefit the account/address
that can be controlled by the parameter and has no sender check in the function code

FNK, FPNC, FPT, FCNE, FNM FA

Wrong Interest
Rate Order

Scenario: have inside code statements that update/accrue interest/exchange rate
Property: and have inside code statements that calculate/assign/distribute the
balance/share/stake/fee/loan/reward

FCE, CEN OC

Wrong
Checkpoint Order

Scenario: have inside code statements that invoke user checkpoint
Property: and have inside code statements that calculate/assign/distribute the
balance/share/stake/fee/loan/reward

FCE, CEN OC

Slippage

Scenario: involve calculating swap/liquidity or adding liquidity, and there is
asset exchanges or price queries
Property: but this operation could be attacked by Slippage/Sandwich Attack due to no
slip limit/minimum value check

FCCE, FCNCE VC

Unauthorized
Transfer

Scenario: involve transfering token from an address different from message sender
Property: and there is no check of allowance/approval from the address owner FNK, FCNE, FCE, FCNCE, FPNC VC

C1: A smart contract project may contain tens of Solidity files2,
making it infeasible or costly to directly feed all of them to
GPT. Moreover, the presence of non-vulnerable functions
may affect GPT’s recognition of vulnerable ones. Therefore,
how to effectively narrow down the candidate functions for
GPT matching becomes essential.

C2: Existing GPT-based vulnerability detection works [17, 29,
31] typically feed GPT with high-level vulnerability descrip-
tions for vulnerability matching, which either demands ad-
vanced reasoning capabilities from GPT or relies on the pre-
trained vulnerability knowledge of GPT models. Hence, can
we break down vulnerability types in a manner that allows
GPT, as a generic and intelligent code understanding tool, to
recognize them directly from code-level semantics?

C3: Considering that GPT may produce unreliable answers or
fail to recognize differences in similar functions, further con-
firming the matched potential vulnerabilities becomes critical.

Since challenge C1 and C3 are both related to challenge C2, we
first present how we tackle C2 in §4.2, followed by our solutions to
C1 and C3 in §4.3 and §4.4, respectively.

2According to our evaluation in §5, a Code4rena project has 36 Solidity files on average.
In contrast to a recent study [29], which claimed to feed entire contracts to the GPT-4
model with 32k tokens, we cannot feed the entire project into the model for analysis.

4.2 GPT-based Scenario and Property Matching
Existing GPT-based vulnerability detection works [17, 29, 31] iden-
tify vulnerabilities by simply feeding GPT with high-level vulner-
ability descriptions, such as the one provided for the Front Run-
ning vulnerability: “An attack where an attacker observes pending
transactions and creates a new transaction with a higher gas price,
enabling it to be processed before the observed transaction. This is
often done to gain an unfair advantage in decentralized exchanges or
other time-sensitive operations.” [29]. However, these descriptions
are condensed from root causes rather than code properties, making
it challenging for GPT to directly interpret code-level semantics.

Breaking down vulnerabilities into scenarios and prop-
erties. GPTScan adopts a different approach by breaking down
vulnerability types into code-level scenarios and properties. Specif-
ically, we use scenarios to describe the code functionality under
which a logic vulnerability could occur and properties to explain
the vulnerable code attributes or operations. Table 1 showcases
how we break down ten common logic vulnerability types into
scenarios and properties. These vulnerability types were selected
from a recent study [63] on smart contract vulnerabilities that re-
quire high-level semantic oracles [62]. The study summarizes six
categories of logic vulnerabilities from S1 to S6 (see §2), and we
chose ten representative cases from these categories. For instance,
the Approval Not Cleared vulnerability is from S3, which involves
missing state update, and the two wrong order vulnerabilities are
from S6, relating to incorrect calculating order. In §6, we discuss
how to extend support for more logic vulnerability types.
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Prompt Template

System: You are a smart contract auditor. Youwill be asked
questions related to code properties. You can mimic an-
swering them in the background five times and provide me
with the most frequently appearing answer. Furthermore,
please strictly adhere to the output format specified in the
question; there is no need to explain your answer.

Scenario Matching

Given the following smart contract code, answer the
questions below and organize the result in a json format
like {"1": "Yes" or "No", "2": "Yes" or "No"}.

"1": [%SCENARIO_1%]?
"2": [%SCENARIO_2%]?

[%CODE%]

Property Matching

Does the following smart contract code "[%SCENARIO,
PROPERTY%]"? Answer only "Yes" or "No".

[%CODE%]

Figure 4: Prompt for scenario and property matching.

Each scenario and property can be divided into two parts. The
first part includes a description of the function’s functionality,
which helps GPTScan perform an initial screening of candidate
functions to reduce unnecessary subsequent scanning. Using Front
Running as an example, functions affected by this vulnerability type
must involve actions like minting, vesting, or transferring tokens
of other users. The approval for such actions is granted in a previ-
ous transaction, allowing attackers to front-run the function and
gain an unfair advantage. The second part includes a description
of the function’s behavior, which is related to the root cause of the
vulnerabilities, such as the lack of security checks and incorrect
accounting order. If a function meets the properties of the first part,
i.e., scenarios, GPTScan will send the function to GPT again to
check if it satisfies both the scenarios and properties. If both parts
are satisfied, GPTScan considers the function likely to contain a
specific type of vulnerability and will confirm it in the later steps.

Yes-or-No scenario and property matching. With the ab-
stracted scenarios and properties, we utilize them to match can-
didate functions using GPT. Figure 4 shows the prompt template
employed by GPTScan for scenario and property matching, which
is designed with three considerations. Firstly, property matching
is performed only for functions that pass our scenario matching.
This separation of scenario and property enables us to query all
scenarios in a single prompt, thus saving on GPT costs. Secondly,
during property matching, we double-confirm the scenario with
GPT by querying the combination of scenario and property rather
than property alone. Indeed, the scenarios and properties from

Table 1 are designed to form a complete sentence. Thirdly, consid-
ering that GPT models sometimes provide ambiguous answers or
hard-to-parse text, scenario and property matching are designed
with yes or no questions only, aiming to minimize the impact of
unstructured GPT responses. Moreover, we instruct GPT to learn
the output JSON format for the multiple-choice scenario matching,
leveraging GPT’s instruction learning capability [47].

Minimizing the impact of GPT output randomness. Al-
though we use yes-or-no questions to restrict the format of GPT
responses, it does not eliminate the inherent randomness of GPT
model output. Consequently, GPT may not provide the same an-
swer for the same question. To address this, one approach is to
set the temperature parameter of GPT models to 0, making the
model deterministic and repetitive. To further enhance the reli-
ability of the answer and minimize the influence of GPT output
randomness, we propose a new approach called “mimic-in-the-
background” prompting. This method is inspired by the zero-shot
chain-of-thought prompting [56]. As shown in Figure 4, we use a
GPT system prompt to instruct the model to mimic answering ques-
tions in the background five times and provide the most frequently
appearing answer to ensure greater consistency.

4.3 Multi-dimensional Filtering for Candidate
Functions

As mentioned in §4.1, we need to filter the candidate functions be-
fore GPT matching. In this section, we propose a multi-dimensional
filtering approach to systematically select candidate functions for
different vulnerability types. Moreover, we conduct reachability
analysis to retain only the functions that could be accessed by
potential attackers.

Project-wide file filtering. Our multi-dimensional filtering
begins with project-wide file filtering, which involves excluding
non-Solidity files e..g, those under the “node_modules” directory,
test files (e.g., those found in various “test” directories), and third-
party library files (e.g., those from well-known libraries such as
“openzeppelin”, “uniswap”, and “pancakeswap”). Once these files
are filtered out, GPTScan can concentrate on the project’s Solidity
files themselves.

Filtering out OpenZeppelin functions. OpenZeppelin [22]
provides a set of libraries to build secure smart contracts on Ethereum,
widely used in the smart contract community. While we have fil-
tered out OpenZeppelin contracts imported as libraries, we found
that OpenZeppelin functions are often directly copied into many
developers’ contract code, making our project-wide file filtering
ineffective. To address this, we first perform an offline analysis of
OpenZeppelin’s source code to extract all its API function signa-
tures as a whitelist. Each function signature in the whitelist includes
the access control modifier, the class name (sub-contract name),
function name, return value types, and parameter types. For exam-
ple, the signature of the transfer function in the ERC20 contract
is public ERC20.transfer(address,uint256). Next, GPTScan
generates the signature of all candidate functions in the same format
and compares them with the signatures in the whitelist. Note that
the signature of the candidate function is generated with both the
class name and the name of the inherited class because developers
may implement the inherited class. By conducting this comparison,
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GPTScan excludes functions with the same signature as functions
in the whitelist, which we consider to be secure in this paper.

Vulnerability-specific function filtering. After project-wide
file and OpenZeppelin filtering, GPTScan conducts function-level
filtering for different vulnerability types, which constitutes the ma-
jor part of GPTScan’s multi-dimensional filtering. To accommodate
various filtering requirements, we have designed a YAML-based [7]
filtering rule specification to support the following filtering rules:
FNK: The Function Name should contain at least one Keyword.
FCE: The Function Content should contain at least one Expression.
FCNE: The Function Content should Not contain any Expression.
FCCE: The Function Content should contain at least one Combina-
tion of given Expressions.
FCNCE: The Function Content should Not contain any Combina-
tion of given Expressions.
FPT: The Function Parameters should match the given Types.
FPNC: The Function should be Public, and we will Not analyze it
with its Caller.
FNM: The Function should Not contain Modifiers that with access
control (e.g., onlyOwner).
CFN: The Callers of this Function will Not be analyzed.

These filtering rules encompass the basic function name (FNK),
the detailed function content (FCE, FCNE, FCCE, and FCNCE), the
function parameters (FPT), and the function’s caller relation (FPNC,
FNM, CFN). Different vulnerabilities will utilize their specific filter-
ing rules. For example, the Risky First Deposit vulnerability shown
in Figure 2 uses only the FCCE rule type to select any combination
of “total”, “supply”, and “liquidity” separately or together. On the
other hand, the Wrong Checkout Order vulnerability, shown in Fig-
ure 3, uses the FCE rule type to filter the function content with the
keyword “checkpoint” and employs the CFN rule type to analyze
only the function itself.

Reachability analysis. After filtering, we perform call graph
analysis to determine the reachability of candidate functions. We
utilize ANTLR [20], a lexer and parser generator, to parse the source
code of the smart contract project and generate an abstract syn-
tax tree (AST). Using the AST, we build a call graph for the en-
tire project. In Solidity, there are four types of access control an-
notations: public, external, internal and private. Functions
marked as public and external can be called by anyone, making
them directly reachable for potential attackers. Functions marked
as internal and private might be called by other reachable func-
tions, so we analyze their reachability and include them if they
are reachable. Moreover, Solidity allows developers to use custom
modifiers to perform permission checks before function calls. For ex-
ample, functions annotated with onlyOwner are only allowed to be
called by the owner, which we consider as unreachable. Functions
that are deemed unreachable are excluded from the subsequent
GPT-based matching in §4.2.

4.4 From GPT Recognition to Static
Confirmation

Although the candidate functions pass the initial filtering and GPT
matching on function properties, GPT does not always pay atten-
tion to syntactic details, such as conditional statements, require

An Example Prompt for GPT Recognition

System: (same as in Figure 4, omitted here for brevity.)

In this function, which variable holds the value of total
minted share or amount? Please answer in a section starts
with "VariableA:".
In this function, which variable or function holds the total
supply/liquidity AND is used by the conditional branch to
determine the supply/liquidity is 0? Please answer in a
section starts with "VariableB:".
In this function, which variable or function holds the
value of the deposit/mint/add amount? Please answer in a
section starts with "VariableC:".
Please answer in the following json format:
{"VariableA":{"Variable name":"Description"}, "Vari-
ableB":{"Variable name":"Description"}, "Vari-
ableC":{"Variable name":"Description"}}

[%CODE%]

Figure 5: A prompt for finding related variables/statements.

statements, assert statements, revert statements, etc. A more fine-
grained static analysis is necessary to identify potentially vulnera-
ble functions at this stage. Static analysis tools typically focus on
specific variables or statements, while our current inputs are still
functions. This is where we need the assistance of GPT to extract
the variables and statements related to the specific business logic
described in the prompt. With these variables and statements, we
can use static analysis to confirm whether the vulnerability exists
or not. An example of the prompt sent to GPT to ask for related
variables or expressions for Risky First Deposit is shown in Figure 5.

For each extracted variable or statement, GPTScan instructs GPT
to provide a short description. This description helps determine
whether the given variables are relevant to the problem and helps
avoid incorrect answers. If GPT provides variables or statements
that do not exist in the context of the function or if the descrip-
tion is not relevant to the question asked, GPTScan terminates the
judgment process and considers that the vulnerability does not
exist. On the other hand, if the provided variables and statements
pass validation, GPTScan feeds them into a static analysis tool to
confirm the existence of the vulnerability using methods such as
static data flow tracing and static symbolic execution.

There are four types of validation by static analysis:
Static Data FlowTracing (DF):Thismethod traces the data flow of
variables in the program, where static analysis determines whether
the two variables or expressions provided by GPT have data depen-
dencies.
Value Comparison Check (VC): This method checks whether
two variables or expressions are compared in condition statements,
such as require, assert, and if. It is used to ensure that variables or
expressions are properly checked before usage.
Order Check (OC): This method checks the execution order of
two statements, where static analysis determines the order of two
statements provided by GPT.
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FunctionCall ArgumentCheck (FA):Thismethod checkswhether
an argument of a function call can be controlled by the user or
meets specific requirements. Specifically, GPT provides a function
call and the index of an argument, and static analysis determines
whether the argument can be controlled by the user or meets the
requirements described in the rules.

4.5 Implementation
GPTScan is implemented with 3,640 lines of code (LOC) in Python
and 154 LOC in Java/Kotlin. In this section, we provide a summary
of some key implementation details as follows.

GPT model and its parameters. During the development and
testing of GPTScan, we utilized OpenAI’s GPT-3.5-turbo model [21].
Thanks to themulti-dimensional filtering introduced in §4.3, GPTScan
could use the default 4k context token size instead of 16k, which
resulted in a more cost-effective solution. The parameters were
mainly kept at their default values, including TopP set to 1, Fre-
quency Penalty set to 0, and Presence Penalty set to 0. As discussed
in §4.2, we adjusted the temperature parameter from the default
value of 1 to 0 to minimize the impact of GPT output randomness.
During each GPT query, the question is sent with an empty session
to ensure that the previous questions and answers do not influence
the current question.

Static analysis tool support. As mentioned in §4.3, we utilized
ANTLR [20] to parse the Solidity source code and generate an
abstract syntax tree (AST). ANTLR allows for source code analysis
without the need for compilation, making it more effective for
source code with limited dependencies and build scripts compared
to tools relying on compilation, such as Slither [33]. Furthermore, to
determine data dependencies between two variables or expressions
in in §4.4, we employed a static analysis tool based on the output
of crytic-compiler [10], a Solidity compiler capable of producing
a standard AST for static analysis. With this approach, we can
construct both a control flow graph and a data dependence graph.

5 EVALUATION
In this section, we conduct experiments to evaluate GPTScan’s accu-
racy, performance, financial overhead, the effectiveness of its static
confirmation, and its capability to discover new vulnerabilities.

Datasets. As shown in Table 2, the experiments were conducted
on three datasets collected from real-world smart contracts. These
datasets consist of around 400 contract projects, 3K Solidity files,
472K lines of code, and include 62 ground-truth logic vulnerabilities.

The first dataset, called Top200, comprises smart contracts with a
top 200 market capitalization. It includes 303 open-source contract
projects from six mainstream Ethereum-compatible chains [60].
Since these projects have been deployed on the blockchain for a
long time and are very popular, it is assumed that they do not
contain vulnerabilities. This dataset is primarily used to evalu-
ate the false positive rate of GPTScan. The second dataset, called
Web3Bugs,, was collected from the recentWeb3Bugs dataset [62, 63],
which comprises 100 Code4rena-audited projects. Among the 100
projects, we included 72 projects that can be directly compiled. The
remaining projects either miss library dependencies or configu-
ration files in their original Web3Bugs repository [62]. The third
dataset, called DefiHacks, come from the well-known DeFi Hacks

Table 2: Three diverse datasets for GPTScan’s evaluation.
Dataset Name Projects P Files F F/P LoC Vuls
Top200 303 555 1.83 134,322 0
Web3Bugs 72 2,573 35.74 319,878 48
DefiHacks 13 29 2.23 17,824 14
Sum 388 3,157 8.14 472,024 62

dataset [2], which consists of vulnerable token contracts that have
incurred past attack incidents. We included 13 vulnerable projects
that certainly cover the vulnerabilities in our ten types.

All these projects are compiled with crytic-compiler [10] us-
ing the default configuration. Note that 17 projects in the Top200
dataset cannot be compiled with crytic-compiler. For these projects,
GPTScan’s static confirmation cannot be applied, and any influ-
enced types of vulnerabilities will be marked as not detected.

ResearchQuestions.With the datasets above, we aim to answer
the following five research questions (RQs):

RQ1: What is the false positive rate of GPTScan when analyz-
ing a dataset of non-vulnerable top contracts?

RQ2: Howaccurate is GPTScan in analyzing real-word datasets
with logic vulnerabilities?

RQ3: How effective is GPTScan’s static confirmation in im-
proving the accuracy of GPTScan?

RQ4: What are the running performance and financial costs
of GPTScan?

RQ5: Can GPTScan discover new vulnerabilities that were
previously missed by human auditors?

5.1 RQ1: Measuring False Positives in the
Non-vulnerable Top Contracts

In RQ1, we aim to measure GPTScan’s false alarm rate in analyzing
non-vulnerable contracts. This is important because when using
GPTScan for massive scanning of on-chain contracts, we want to
minimize the false alarms that require manual checking.

For this purpose, we have collected the Top200 dataset, which
consists of 303 contract projects that are deemed non-vulnerable.
We present GPTScan’s analysis result of Top200 in Table 3. Along
with the results of Web3Bugs and DefiHacks, we calculate the accu-
racy metrics at the function level for each tested vulnerability type.
For example, if a project has been tested with five vulnerability
types, the sum of all true positives, false positives, true negatives,
and false negatives for this project should be 5. More specifically,
we calculate the four accuracy metrics as follows:
TP is the number of true positives. One true positive is counted
when GPTScan successfully detects a ground-truth vulnerable func-
tion for the tested vulnerability type.
TN is the number of true negatives. One true negative is counted
when GPTScan correctly does not report any vulnerable function
for the tested vulnerability type.
FP is the number of false positives. One false positive is counted
whenGPTScan incorrectly reports one ormore vulnerable functions
for the tested vulnerability type that has no corresponding ground-
truth vulnerabilities in the tested project.
FN is the number of false negatives. One false negative is counted
when GPTScan fails to detect the ground-truth vulnerable function
for the tested vulnerability type.
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Table 3: Overall results of GPTScan’s accuracy evaluation.
Dataset Name TP TN FP FN Sum
Top200 0 283 13 0 296
Web3Bugs 40 154 30 8 232
DefiHacks 10 19 1 4 34

Based on the calculation of thesemetrics, GPTScan reports 13 FPs
and 283 TNs for the Top200 dataset, as shown in Table 3. As a result,
the false positive rate of GPTScan in analyzing non-vulnerable top
contracts like Top200 is 4.39%. Moreover, we find that GPTScan has
a similar precision when analyzing Top200 and DefiHacks, both of
which are token contracts with around 2 Solidity files per project
(see Table 2). When analyzing large projects like those inWeb3Bugs,
the precision drops from around 90% (90.91% for DefiHacks) to 60%
(57.14% for Web3Bugs). This drop in precision is mainly because
each contract project inWeb3Bugs has around 36 Solidity files on
average (see Table 2), which is 18 times more than in DefiHacks and
Top200, increasing the chance of reporting false positives. In §5.2,
we will further discuss the root causes of GPTScan’s false positives.

Answer for RQ1: GPTScan achieves a low false positive rate of
4.39% when analyzing non-vulnerable top contracts like Top200.
It also demonstrates similar performance in analyzingDefiHacks,
with a precision of 90.91%. These results indicate that GPTScan
is suitable for massive scanning of on-chain contracts. Moreover,
when analyzing large contract projects inWeb3Bugs, GPTScan
still achieves an acceptable precision of 57.14%.

5.2 RQ2: Efficacy for Detecting Vulnerable
Contracts

In RQ2, we evaluate the effectiveness of GPTScan in analyzing
vulnerable contracts in theWeb3Bugs and DefiHacks datasets.

As shown in Table 2, the Web3Bugs dataset contains 48 ground-
truth logic vulnerabilities, while the DefiHacks dataset has 14. Ta-
ble 3 presents the scanning results of these two datasets using
GPTScan. In the case ofWeb3Bugs, GPTScan analyzed a total of 232
vulnerability types across 72 projects, detecting 40 TPs and missing
8 FNs, while incurring 30 FPs. Consequently, GPTScan achieved a
recall of 83.33% and an F1 score of 67.8% on this dataset. For Defi-
Hacks, GPTScan analyzed a total of 34 vulnerability types across
13 projects, detecting 10 TPs and missing 4 FNs, while incurring 1
FP. On this dataset, GPTScan’s recall is 71.43% and the F1 score is
80%. These results demonstrate that GPTScan effectively detects
vulnerable contracts for the covered logic vulnerability types. Fol-
lowing the initial precision analysis in §5.1, we now analyze the
root causes of GPTScan’s false negatives and false positives.

In the 12 false negative cases, 4 of them are Price Manipulation
by AMM and 3 of them are Risky First Deposit. The main reason
for these two kinds of false negatives is that GPTScan does not
implement an alias analysis in the static check, causing failure
during static dataflow tracing. Additionally, there are 2 cases of
Front Running, where the scenarios or properties are not accurately
matched by GPT. Furthermore, there are 2 cases of Slippage and 1
case ofUnauthorized Transfer. Similar to the false positive cases, The
main reason for the false negative Slippage cases is the existence of

numerous variants of slippage checks, making them challenging to
detect using GPT and static analysis. In the case of Unauthorized
Transfer, the main reason for this false negative is that GPT failed
to distinguish the inconsistency between the comment and code.

GPTScan achieves effective vulnerability detection above at an
acceptable false alarm rate. Among the 44 false positive cases from
the three datasets, 15 (34.09%) were related to Price Manipulation
by AMM, followed by 11 (25.00%) cases of Unauthorized Transfer.
For these two types, the main reason for the false alarms is that
these vulnerabilities require specific triggering conditions involving
other related logic, which may not be contained within a single
function and its callers or callees. For example, in Unauthorized
Transfer, the checks for the allowance/approval from the address
owner can occur at various positions in the logic chain and may
involve multiple functions. Similarly, the function that calculates
the price with AMM for Price Manipulation may not be used by
other functions responsible for swapping or buying tokens, leading
to the vulnerabilities not being triggered in those circumstances.

Additionally, there were 5 cases of Risky First Deposit and 5 cases
of Slippage. For Risky First Deposit, the false alarms occurred be-
cause there were many statements related to checking the supply
and setting the share, making it challenging for GPT to understand
lengthy code segments accurately. Regarding Slippage, the false
alarms were mainly due to two factors. First, similar to Unautho-
rized Transfer, the check for slippage can happen at any position in
the logic chain, and second, slippage checks can take many differ-
ent forms and variants, making them difficult to detect with GPT
and static analysis. For this vulnerability type, our focus was on
achieving a higher recall at the cost of slightly sacrificing preci-
sion. There were also 4 cases ofWrong Interest Rate Order, 3 cases
of Approval Not Cleared, and 1 case of Wrong Checkpoint Order.
ForWrong Interest Rate Order andWrong Checkpoint Order, these
vulnerabilities are intricately related to the business logic of the
project itself, making it challenging to reduce false alarms without
comprehensive knowledge of the project’s design. As for Approval
Not Cleared, the false alarms were primarily because the function
may not always be used to transfer tokens, causing GPTScan to
detect it erroneously.

Answer for RQ2: GPTScan shows its efficacy in detecting
ground-truth logic vulnerabilities in the Web3Bugs and Defi-
Hacks datasets, with a recall of 83.33% and an F1 score of 67.8%
for Web3Bugs, and a recall of 71.43% and an F1 score of 80% for
DefiHacks. The main reason for GPTScan’s false positives and
negatives is the lack of understanding of the entire project logic.

5.3 RQ3: Effectiveness of Static Confirmation
In RQ3, we conduct a further analysis of GPTScan’s intermediate
results onWeb3Bugs to examine how static confirmation reduces
false positives generated by pure GPT-based matching.

Table 4 shows the raw functions reported by GPTScan before
and after static confirmation. Note that one vulnerability type may
have multiple functions (the final result counts either TP or FP
once, according to the calculation in §5.1), and these functions are
not merged yet (i.e., a function A and the combination of function
A and all its callers would be counted multiple times) that will
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Table 4: Raw functions before and after static confirmation.
Vulnerability Type Before After
Approval Not Cleared 34 12
Risky First Deposit 100 21
Price Manipulation by AMM 187 114
Price Manipulation by Buying Tokens 8 8
Vote Manipulation by Flashloan 2 0
Front Running 6 4
Wrong Interest Rate Order 150 11
Wrong Checkpoint Order 49 1
Slippage 99 42
Unauthorized Transfer 12 8
Total 647 221

be done in the final result. Hence, so the number of “after” cases
shown here is much larger than the final TP+FP in Table 3. From
the result, we observe that static confirmation effectively filters
out most false positive cases for the vulnerability types: Wrong
Interest Rate Order, Wrong Checkpoint Order and Risky First Deposit.
The reason behind this is that the description of scenarios and
properties for these three types is coarse-grained, leading to many
candidate functions passing the GPT-based matching step. In static
confirmation, GPTScan can further instruct GPT to identify related
statements and variables, filtering out those that do not satisfy the
vulnerability types. Overall, after static confirmation, only 221 raw
functions remain out of the original 647 functions. This indicates
that static confirmation successfully filters out two-thirds of the
false positives.

We further analyze the negative impact of static confirmation.
Among the 426 cases filtered out, only 3 cases were false negatives,
and 1 case was related to compilation problems. Out of the total 8
false negatives inWeb3Bugs, the remaining 4 cases did not pass the
GPT-based scenario and property matching step. This indicates that
static confirmation has only a minor impact on the false negatives.

Answer for RQ3: Static confirmation effectively filtered out
65.84% of the false positive cases in theWeb3Bugs dataset, while
having only a minor impact on the false negative cases.

5.4 RQ4: Performance and Financial Overhead
In RQ4, we evaluate the running time and financial costs of GPTScan.
We measured the time and financial cost of GPTScan on all three
datasets, and the results are shown in Table 5. In this experiment,
we used tiktoken [19], a tokenization tool published by OpenAI and
used for GPT models, to estimate the number of tokens sent and
received by GPTScan. With the number of tokens sent and received,
we can estimate the financial cost of GPTScan. The total number
of lines of code is 472K, and it took 6,793.35 seconds and 4.9984
USD to complete the scan. On average, it takes 14.39 seconds and
0.010589 USD to scan per thousand lines of code.

On Top200, the scan cost per thousand lines of code is the cheap-
est, and the scan speed per thousand lines of code is the fastest. This
is because most candidate functions are filtered out in GPTScan’s
first two steps, without the need for finding related variables and ex-
pressions for static check. OnWeb3Bugs andDefiHacks, the scan cost
per thousand lines of code is the most expensive and the scan speed

Table 5: Running time and financial costs of GPTScan.
Dataset KL∗ T∗∗ C∗∗∗ T/KL C/KL
Top200 134.32 1,437.37 0.7507 10.70 0.005589
Web3Bugs 319.88 4,980.57 3.9682 15.57 0.018658
DefiHacks 17.82 375.41 0.2727 21.06 0.015303
Overall 472.02 6,793.35 4.9984 14.39 0.010589

∗ KL for KLoC; ∗∗ T for Time; ∗∗∗ C for Financial Cost.

per thousand lines of code is the slowest, respectively. Projects in
Web3Bugs and DefiHacks are more complex than Top200, and there
are more complex candidate functions to be scanned. These com-
plex functions could not be filtered by static filtering and scenario
matching, which causes more time and financial cost.

Answer for RQ4: GPTScan is fast and cost-effective, taking an
average of only 14.39 seconds and 0.01 USD to scan per thou-
sand lines of Solidity code in the tested datasets. The relatively
higher cost and slower speed forWeb3Bugs and DefiHacks can
be attributed to the presence of more complex functions that
cannot be filtered out by static filtering and scenario matching.

5.5 RQ5: Newly Discovered Vulnerabilities
In RQ5, we perform a thorough analysis of GPTScan’s results on the
Web3Bugs dataset to see if it could identify new vulnerabilities that
were previously missed by human auditors. Interestingly, GPTScan
successfully discovered 9 vulnerabilities from 3 different types,
which did not appear in the audit reports of Code4rena. Among
these 9 newly discovered vulnerabilities, 5 are Risky First Deposit,
3 are Price Manipulation by AMM, and 1 is Front Running. In the
following paragraphs, we present one example of each type of
newly discovered vulnerability for further discussion.

Risky First Deposit. Among the newly discovered vulnerabil-
ities, 56% of them are Risky First Deposit. In the example shown
in Figure 6, on line 11, when the variable _pool is 0, indicating
an empty liquidity pool, the depositor can obtain all the shares
from the pool. The presence of both _totalSupply and _pool vari-
ables to represent the liquidity amount in the pool may confuse
human auditors. Although lines 5 to 8 properly handle the case
when _totalSupply is 0, this specific condition involving _pool
on line 11 creates a vulnerability that could be missed.

Price Manipulation by AMM. Among the newly discovered
vulnerabilities, 33% of them are Price Manipulation by AMM. In
the example shown in Figure 7, the pendingRewards function is
used to calculate the rewards that can be claimed by the user. On
line 9, when the pool is not empty, the amount of rewards that can
be redeemed by the user is calculated based on the total supply
in the pool. However, the total supply can be controlled by users,
allowing them to manipulate the redeemed amount and exploit the
contracts.

Front Running. Among the newly discovered cases, there is
one case of Front Running. In the example shown in Figure 8, the
token to be minted should be previously transferred (line 1). How-
ever, anyone can call the mint function to mint tokens that are
transferred but not minted, as there is only a check with the cached
amount of the contract (line 7), but not the cached amount of a



Conference’17, July 2017, Washington, DC, USA Sun et al.

1 function deposit(uint _amount) external {

2 ...

3 uint _pool = balance ();
4 uint _totalSupply = totalSupply ();

5 if (_totalSupply == 0 && _pool > 0) { // trading

fee accumulated while there were no IF LPs

6 vusd.safeTransfer(governance , _pool);

7 _pool = 0;

8 }

9 uint shares = 0;

10 if (_pool == 0) {

11 shares = _amount;

12 } else {

13 shares = _amount * _totalSupply / _pool;

14 }

15 ...

16 }

Figure 6: Risky First Deposit in 2022-02-hubble.

1 function pendingRewards(uint256 _pid , address _user)

external view returns (uint256) {

2 PoolInfo storage pool = poolInfo[_pid];

3 UserInfo storage user = userInfo[_pid][_user];

4 uint256 accRewardsPerShare = pool.

accRewardsPerShare;

5 uint256 lpSupply = pool.lpToken.balanceOf(address(
this));

6 if (block.number > pool.lastRewardBlock &&

lpSupply != 0) {

7 uint256 multiplier = getMultiplier(pool.

lastRewardBlock , block.number);
8 uint256 rewardsAccum = multiplier.mul(

rewardsPerBlock).mul(pool.allocPoint).div

(totalAllocPoint);

9 accRewardsPerShare = accRewardsPerShare.add(

rewardsAccum.mul(1e12).div(lpSupply));

10 }

11 return user.amount.mul(accRewardsPerShare).div(1

e12).sub(user.rewardDebt);

12 }

Figure 7: Price Manipulation by AMM in 2021-09-sushimiso.

1 /// @notice The lp tokens that the user contributes

need to have been transferred previously , using a

batchable router.

2 function mint(address to)

3 public
4 beforeMaturity

5 returns (uint256 minted)

6 {

7 uint256 deposit = pool.balanceOf(address(this)) -

cached;

8 minted = _totalSupply * deposit / cached;

9 cached += deposit;

10 _mint(to, minted);

11 }

Figure 8: Front Running in 2021-08-yield.

specific user. This vulnerability allows an attacker to front run
the minting process. When a user has transferred a token but not
minted it, the attacker could front run the mint function to mint
the token before the legitimate user.

Answer for RQ5: GPTScan identified 9 new vulnerabilities not
present in the audit reports of Code4rena. This highlights the
value of GPTScan as a useful supplement to human auditors.

6 DISCUSSION
In this section, we discuss GPTScan’s applicability to other logic
vulnerabilities, its current limitations, and use of other GPT models.

Applicability to other logic vulnerabilities.Currently, GPTScan
supports 10 logic vulnerability types, which were selected as rep-
resentative cases from six categories of logic vulnerabilities men-
tioned in §2 and §4.2, based on the paper by Zhang et al. [63].
However, each category has not only one or two vulnerability
types. To extend GPTScan’s support to other logic vulnerabilities
within each category, one simply needs to provide the following
four items in Table 1: scenario and property described in natural
language, the filters applied to the functions, and the static rules
required to confirm the vulnerability. Note that GPTScan already
supports 9 types of filters and 4 types of static check rules, which
can be reused to support more logic vulnerabilities.

Current limitations in design and implementation. In §4.3,
the modifiers filtering part only utilized a whitelist to filter the mod-
ifiers with access control. However, this filtering method can lead to
false positives or negatives of vulnerabilities. To enhance accuracy,
a more precise approach is required, which involves retrieving the
definition of modifiers and conducting a detailed semantic analysis
on them. For the static analysis part in §4.4, a simple method was
used to analyze the control flow graph and data dependence graph.
This analysis is not path-sensitive, meaning that some path-related
issues, such as the reachability of certain execution paths under
specific conditions, might be overlooked. It could be improved by
introducing symbolic execution engines to the static analysis part.

The use of other GPTmodels. As mentioned in §4.5, GPTScan
employs thewidely used GPT-3.5-turbomodel [21] as its GPTmodel.
We also conducted a preliminary test using GPT-4, but we did not
observe a notable improvement, while the cost increased 20 times.
This finding suggests that GPTScan does not necessarily require
more powerful GPT models. In the future, we plan to conduct
a systematic test of various GPT models within the context of
GPTScan, including Google Bard and Claude (when we have API
access to them) and the self-trained LLaMA model.

7 RELATEDWORK
In this section, we discuss some related work. Various research and
tools have focused on vulnerability detection in smart contracts.
Traditional static analysis tools, such as Slither [33], Vandal [25],
Ethainter [24], Zues [39], Securify [54] and 4naly3er [49], are used
to analyze the source code and detect vulnerabilities. Symbolic
execution tools like Manticore [44], Mythril [14], Halmos [15] and
Pyrometer [16] can perform bound checks and detect vulnerabilities
in bytecode and source code. These analysis tools have been applied
to detect vulnerabilities in smart contracts, such as reentrancy [43,
53], arithmetic overflow [51], state inconsistency problems [23],
and access control problems [32, 35, 42]. Dynamic analysis tools,
such as fuzz testing [36, 37, 58, 61], automatically generate test
cases or inputs for smart contracts to find abnormal behaviors
during runtime. Formal verification techniques like Verx [48] and
VeriSmart [50] can be used to check user-provided specifications.
Nevertheless, Zhang et al. [63] suggested that more than 80% of
exploitable bugs are machine undetectable.
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Before the advent of ChatGPT (GPT-3.5) [46], most NLP-based
vulnerability detection methods [27, 28, 45, 52, 57] involved feed-
ing code into binary or multi-classification models. Now, with the
development of instructing GPT [55] and other research providing
few-shot learning capabilities [26], interactive solutions can be used
for tasks like code repair [38, 59] and vulnerability detection [29].
However, according to the research by David et al. [29], the GPT-
4 model itself cannot accurately detect vulnerabilities. Chen et
al. [34] fine-tuned the GPT-3 model for improved performance in
GUI graphical interface testing tasks and utilized it for automated
testing of Android applications. Additionally, PentestGPT [30] and
ChatRepair [59] utilized feedback from the execution results to
enhance the performance of the GPT model during interactions.

8 CONCLUSION
In this paper, we proposed GPTScan, the first tool combining GPT
with static analysis for smart contract logic vulnerability detection.
GPTScan utilized GPT to match candidate vulnerable functions
based on code-level scenarios and properties, and further instructed
GPT to intelligently recognize key variables and statements, which
were then validated by static confirmation. Our evaluation on three
diverse datasets with around 400 contract projects and 3K Solidity
files showed that GPTScan achieves high precision (over 90%) for to-
ken contracts and acceptable precision (57.14%) for large projects, as
well as a recall of over 70% for detecting ground-truth logic vulner-
abilities. GPTScan is fast, cost-effective, and capable of discovering
new vulnerabilities missed by human auditors. In future work, we
will expand GPTScan’s support for more logic vulnerability types.
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